Word Embedding
One-Hot Encoder
在word2vec出现之前,通常将词汇转化为一个单位向量。
例如”北京”对应3987,中国对应”5178”,也就是向量对应位置上数字为1,其余为0.
而对于一篇文章,对应的向量是所有词汇对应向量的和。
缺点
- 编码随机,从向量看不出两个词汇的关系。
- 稀疏矩阵训练效率较低
Vector Space Models
可以将字词转化为连续值
主要依赖假设是Distributional Hypothesis,相同语境下出现的字将被映射到向量空间的相近位置。
有两类具体的方法:
- 计数模型,记录相邻的词出现的频率,然后把计数结果转为小而稠密的矩阵(例如Latent Semantic Analysis)
- 预测模型,根据相邻的词,推测指定位置的词。(例如Neural Probabilistic Language Models)
OneHot 与 vector转化 假如 Embedding matrix 为$E_{300\times 10k}$,也就是共有10k个单词,使用OneHot编码的话,某个单词可以记为$O_{10k\times 1}$,使用E可以把单词压缩到300维。那么某单词的 vector 编码是$EO$(矩阵乘积)
hierarchical softmax
Negative sampling
有3个点,画在草稿纸上,以后整理成好看的电子版
GloVe word vectors
cbow与skip-gram
cbow 是用上下文预测某个词。skip gram 是用某个词预测上下文。
Word2Vec
Neural Probabilistic Language Models通常可以用MLE方法计算,但计算量巨大。
Word2Vec的CBOW中,不需要计算完整概率,而是训练一个二元分类模型,用来区分真实词汇和编造的噪声词汇。
这种编造噪声用来训练的方法叫做 Negative Sampling
实际中,我们用Noise-Contrastive Estimation(NCE) Loss.
TensorFlow里有tf.nn.nce_loss()
可以直接实现。
理论假设
- 分布式假设
- 相同上下文语境的词有相似的含义
- 缺点
- 同义词问题
美国总统
特朗普
决定在墨西哥边境修建隔离墙
听说美国那个川普
总统要在墨西哥边上修个墙
同学你的川普
挺带感啊
代码实现
这个效果比tensorflow版本的差很多,tensorflow版本参见另一篇博客
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import collections
import numpy as np
import jieba
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
training_file = '人民的名义.txt'
def build_dataset(words, n_words):
word_freq = [['UNK', -1]]
word_freq.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in word_freq:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
word_freq[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
# data:idx 组成的一个序列
# dictionary:word2idx
# reversed_dictionary:idx2word
return data, word_freq, dictionary, reversed_dictionary
with open(training_file, 'r') as f:
training_data = ''.join(f.readlines())
print("总字数", len(training_data))
training_ci = np.array([i for i in list(jieba.cut(training_data)) if len(i.strip()) > 0])
print("总词数", len(training_ci))
# %%
training_label, count, dictionary, words = build_dataset(training_ci, 10000)
# 计算词频
word_count = np.array([freq for _, freq in count], dtype=np.float32)
word_freq = word_count / np.sum(word_count) # 计算每个词的词频
word_freq = word_freq ** (3. / 4.) # 词频变换
words_size = len(dictionary)
print("字典词数", words_size)
# %%
C = 3
num_sampled = 64 # 负采样个数
BATCH_SIZE = 12
EMBEDDING_SIZE = 128
class SkipGramDataset(Dataset):
def __init__(self, training_label, word_to_idx, idx_to_word, word_freqs):
super(SkipGramDataset, self).__init__()
self.text_encoded = torch.Tensor(training_label).long()
self.word_to_idx = word_to_idx
self.idx_to_word = idx_to_word
self.word_freqs = torch.Tensor(word_freqs)
def __len__(self):
return len(self.text_encoded)
def __getitem__(self, idx):
idx = min(max(idx, C), len(self.text_encoded) - 2 - C) # 防止越界
center_word = self.text_encoded[idx]
pos_indices = list(range(idx - C, idx)) + list(range(idx + 1, idx + 1 + C))
pos_words = self.text_encoded[pos_indices]
# 多项式分布采样,取出指定个数的高频词
neg_words = torch.multinomial(self.word_freqs, num_sampled + 2 * C, False) # True)
# 去掉正向标签
neg_words = torch.Tensor(np.setdiff1d(neg_words.numpy(), pos_words.numpy())[:num_sampled]).long()
return center_word, pos_words, neg_words
print('制作数据集...')
train_dataset = SkipGramDataset(training_label, dictionary, words, word_freq)
dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, drop_last=True, shuffle=True)
class Model(nn.Module):
def __init__(self, vocab_size, embed_size):
super(Model, self).__init__()
self.vocab_size = vocab_size
self.embed_size = embed_size
initrange = 0.5 / self.embed_size
self.in_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False)
self.in_embed.weight.data.uniform_(-initrange, initrange)
def forward(self, input_labels, pos_labels, neg_labels):
input_embedding = self.in_embed(input_labels)
pos_embedding = self.in_embed(pos_labels)
neg_embedding = self.in_embed(neg_labels)
log_pos = torch.bmm(pos_embedding, input_embedding.unsqueeze(2)).squeeze()
log_neg = torch.bmm(neg_embedding, -input_embedding.unsqueeze(2)).squeeze()
log_pos = F.logsigmoid(log_pos).sum(1)
log_neg = F.logsigmoid(log_neg).sum(1)
loss = log_pos + log_neg
return -loss
model = Model(words_size, EMBEDDING_SIZE).to(device)
model.train()
valid_size = 16
valid_window = words_size / 2 # 取样数据的分布范围.
valid_examples = np.random.choice(int(valid_window), valid_size, replace=False) # 0- words_size/2,中的数取16个。不能重复。
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
NUM_EPOCHS = 20
for e in range(NUM_EPOCHS):
for ei, (input_labels, pos_labels, neg_labels) in enumerate(dataloader):
input_labels = input_labels.to(device)
pos_labels = pos_labels.to(device)
neg_labels = neg_labels.to(device)
optimizer.zero_grad()
loss = model(input_labels, pos_labels, neg_labels).mean()
loss.backward()
optimizer.step()
if ei % 3000 == 0:
print("epoch: {}, iter: {}, loss: {}".format(e, ei, loss.item()))
if e % 1 == 0:
norm = torch.sum(model.in_embed.weight.data.pow(2), -1).sqrt().unsqueeze(1)
normalized_embeddings = model.in_embed.weight.data / norm
valid_embeddings = normalized_embeddings[valid_examples]
similarity = torch.mm(valid_embeddings, normalized_embeddings.T)
for i in range(valid_size):
valid_word = words[valid_examples[i]]
top_k = 8 # 取最近的排名前8的词
nearest = (-similarity[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = words[nearest[k].cpu().item()]
log_str = '%s,%s' % (log_str, close_word)
print(log_str)
使用 word2vec 预训练模型
100多种中文词向量 https://github.com/Embedding/Chinese-Word-Vectors
import torch
from tqdm import tqdm
class Word2VecRes:
def __init__(self, model_name):
f = open(model_name, 'r')
summary = f.readline().split(' ')
print(f'Loading word feature vector, len(words)={summary[0]}, len(vec)={summary[1]}')
words, feature_vec = [], []
pbar = tqdm(total=int(summary[0]))
for line in f:
lin = line.strip().split(' ')
words.append(lin[0])
feature_vec.append([float(item) for item in lin[1:]])
pbar.update(1)
word2idx = dict([[j, i] for i, j in enumerate(words)])
feature_vec = torch.tensor(feature_vec)
self.words = words
self.word2idx = word2idx
self.feature_vec = feature_vec
f.close()
def get_vec(self, words):
valid_idx = [self.word2idx[word] for word in words]
return self.feature_vec[valid_idx, :]
def get_sim_from_vector(self, embeddings, top_k):
similarity = torch.mm(embeddings, self.feature_vec.T)
close_words = []
for idx in range(similarity.shape[0]):
nearest = (-similarity[idx, :]).argsort()[:top_k]
close_word = [self.words[idx] for idx in nearest.tolist()]
close_words.append(close_word)
return close_words
def get_similar(self, words, top_k=8):
close_words = self.get_sim_from_vector(self.get_vec(words), top_k=top_k)
return list(zip(words, close_words))
word2vec_res = Word2VecRes('sgns.target.word-word.dynwin5.thr10.neg5.dim300.iter5')
word2vec_res.get_vec(['第一'])
valid_words = ['第一', '已经', '批准', '东北', '迅速', '再次']
word2vec_res.get_similar(valid_words)
结果:
第一 close to: ['第二', '第', '名列第一', '百零四', '百零一', '百一十', '百零二', '章']
已经 close to: ['早已', '都已', '已', '早就', '已然', '业已', '已是', '快要']
批准 close to: ['核准', '批复', '备案', '国务院', '审批', '批准后', '核发', '行政主管']
东北 close to: ['西南', '西北', '东南', '东南部', '华北', '北部', '向东南', '西北部']
迅速 close to: ['快速', '较快', '飞速', '急速', '极快', '迅猛', '迅即', '最快']
再次 close to: ['再度', '再一', '重新', '一再', '初次', '数次', '次', '屡次']
答案获取:
def task_answer(question):
question = [i.strip() for i in question.replace('=', '-').split('-')]
tmp = word2vec_res.get_vec([question[2]]) - (
word2vec_res.get_vec([question[0]]) - word2vec_res.get_vec([question[1]]))
answers = word2vec_res.get_sim_from_vector(tmp, 4)
for answer in answers[0]:
if answer not in question:
return answer
questions = [
'薄伽丘-十日谈=司马迁-({})',
'薄伽丘-十日谈=屈原-({})',
'云南-昆明=西藏-({})',
'斯德哥尔摩-瑞典=里斯本-({})',
'男-女=国王-({})',
'中国-人民币-日本-({})'
]
for question in questions:
answer = task_answer(question)
print(question.format(answer))
结果:
薄伽丘-十日谈=司马迁-(史记)
薄伽丘-十日谈=屈原-(楚辞)
云南-昆明=西藏-(拉萨)
斯德哥尔摩-瑞典=里斯本-(葡萄牙)
男-女=国王-(王后)
中国-人民币-日本-(日元)