【LeetCode】trie 前缀树



2022年04月16日    Author:Guofei

文章归类: 刷题    文章编号: 595

版权声明:本文作者是郭飞。转载随意,标明原文链接即可。本人邮箱
原文链接:https://www.guofei.site/2022/04/16/lc-trie.html


相关集合

  • 书 https://leetcode-cn.com/leetbook/detail/trie/
  • 题 https://leetcode-cn.com/tag/trie/problemset/

一些必背题

676. Implement Magic Dictionary

!!! 典型题

用dfs似乎更好写一些

class TrieNode:
    def __init__(self):
        self.children = dict()
        self.is_word = False


class MagicDictionary:

    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        curr = self.root
        for char in word:
            if char not in curr.children:
                curr.children[char] = TrieNode()
            curr = curr.children[char]
        curr.is_word = True

    def buildDict(self, dictionary) -> None:
        for word in dictionary:
            self.insert(word)

    def search(self, searchWord: str) -> bool:
        res = [False]

        def dfs(node, idx, flit):
            if res[0]:
                return
            if idx == len(searchWord):
                if flit == 1 and node.is_word:
                    res[0] = True
                return

            for child in node.children:
                if searchWord[idx] == child:
                    dfs(node.children[child], idx + 1, flit)
                else:
                    if flit == 0:
                        dfs(node.children[child], idx + 1, 1)

        dfs(self.root, 0, 0)
        return res[0]

820. Short Encoding of Words

题目很有趣,字典可以压缩

题很简单,比其它中等简单很多

class TrieNode:
    def __init__(self):
        self.children = dict()
        self.is_word = False


class Solution:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        curr = self.root
        for char in word:
            if not char in curr.children:
                curr.children[char] = TrieNode()
            curr = curr.children[char]
        curr.is_word = True

    def minimumLengthEncoding(self, words) -> int:
        for word in words:
            self.insert(word[::-1])

        res = [0]

        def dfs(node, level):
            if not node.children:
                res[0] += level

            for child_node in node.children.values():
                dfs(child_node, level + 1)

        dfs(self.root, 1)
        return res[0]

题目

677. Map Sum Pairs

import collections


class TrieNode:
    def __init__(self):
        self.children = collections.defaultdict(TrieNode)
        self.val = 0

class MapSum:

    def __init__(self):
        self.root = TrieNode()


    def insert(self, key: str, val: int) -> None:
        curr = self.root
        for char in key:
            curr=curr.children[char]

        curr.val=val


    def sum(self, prefix: str) -> int:
        curr=self.root
        for char in prefix:
            curr=curr.children[char]
            if curr is None:
                return 0

        res=0
        queue=[curr]
        while queue:
            new_queue=[]
            for item in queue:
                new_queue.extend(item.children.values())
                res+=item.val
            queue=new_queue
        return res

648. Replace Words

在模版上改一改

import collections


class TrieNode:
    def __init__(self):
        # 如果字符是有限的,这里可以用 list 来存储。不用做hash更快
        self.children = collections.defaultdict(TrieNode)
        self.is_word = False
        self.whole_word=None


class Trie:

    def __init__(self):
        self.root = TrieNode()

    def insert(self, word: str) -> None:
        curr = self.root
        for char in word:
            curr = curr.children[char]
            # 要求只记录最短的,长的就不往里面塞了
            if curr.is_word:
                return
        curr.is_word = True
        curr.whole_word=word

    def search(self, word: str) -> bool:
        curr = self.root
        for char in word:
            curr = curr.children.get(char)
            if curr is None:
                return False
        return curr.is_word

    def startsWith(self, prefix: str) -> bool:
        curr = self.root
        for char in prefix:
            curr = curr.children.get(char)
            if curr is None:
                return False
        return True

    def in_start(self, sentence):
        curr = self.root
        for char in sentence:
            if char not in curr.children:
                return False
            curr = curr.children.get(char)
            if curr.is_word:
                return True
        return False

    def extract_prefix(self,sentence):
        curr = self.root
        for char in sentence:
            if char not in curr.children:
                return sentence
            curr = curr.children.get(char)
            if curr.is_word:
                return curr.whole_word
        return sentence





class Solution:
    def replaceWords(self, dictionary: List[str], sentence: str) -> str:
        trie=Trie()
        for word in dictionary:
            trie.insert(word)

        res=[]
        for s in sentence.split(' '):
            res.append(trie.extract_prefix(s))

        return ' '.join(res)

211. Design Add and Search Words Data Structure

BFS

class TrieNode:
    def __init__(self):
        self.children = dict()
        self.is_word = False

    def __repr__(self):
        return str(self.children.keys())


class WordDictionary:
    def __init__(self):
        self.root = TrieNode()

    def addWord(self, word: str) -> None:
        curr = self.root
        for char in word:
            if char not in curr.children:
                curr.children[char] = TrieNode()
            curr = curr.children[char]
        curr.is_word = True

    def search(self, word: str) -> bool:
        queue, idx = [self.root], 0
        while queue and idx < len(word):
            new_queue = []
            if word[idx] == '.':
                for curr in queue:
                    new_queue.extend(curr.children.values())
            else:
                for curr in queue:
                    if word[idx] in curr.children:
                        new_queue.append(curr.children[word[idx]])

            if not new_queue:
                return False

            queue = new_queue
            idx += 1

        if idx < len(word):
            return False
        for curr in queue:
            if curr.is_word:
                return True
        return False

dfs版本,不过效率低于 BFS

class TrieNode:
    def __init__(self):
        self.children = dict()
        self.is_word = False


class WordDictionary:
    def __init__(self):
        self.root = TrieNode()

    def addWord(self, word: str) -> None:
        curr = self.root
        for char in word:
            if char not in curr.children:
                curr.children[char] = TrieNode()
            curr = curr.children[char]
        curr.is_word = True

    def search(self, word: str) -> bool:
        res = [False]

        def dfs(node, idx):
            if res[0]:
                return

            if idx == len(word):
                if node.is_word:
                    res[0] = True
                return

            if word[idx] == '.':
                for child in node.children.values():
                    dfs(child, idx + 1)
            else:
                if word[idx] in node.children:
                    dfs(node.children[word[idx]], idx + 1)

        dfs(self.root, 0)
        return res[0]

386. Lexicographical Numbers

class Solution:
    def lexicalOrder(self, n: int) -> List[int]:
        tmp=[str(i) for i in range(1,n+1)]
        tmp.sort()
        return [int(i) for i in tmp]

720

class TrieNode:
    def __init__(self):
        self.children=dict()
        self.is_word=False


class Solution:
    def __init__(self):
        self.root=TrieNode()

    def insert(self,word):
        curr=self.root
        for char in word:
            if char not in curr.children:
                curr.children[char]=TrieNode()

            curr=curr.children[char]
        curr.is_word=True

    def add_dictionary(self,words):
        for word in words:
            self.insert(word)

    def longestWord(self, words: List[str]) -> str:

        self.add_dictionary(words)


        res=['']
        def dfs(node,string):
            #print(string)
            if node.is_word:
                if len(string)==len(res[0]):
                    res.append(string)
                elif len(string)>len(res[0]):
                    res.clear()
                    res.append(string)

            for child_char,child_node in node.children.items():
                if child_node.is_word:
                    dfs(child_node,string+child_char)

        dfs(self.root,'')
        res.sort()
        return res[0]

745

作弊:先暴力把所有情况列出来

class WordFilter:

    def __init__(self, words: List[str]):
        self.dictionary=dict()
        for idx,word in enumerate(words):
            for i in range(1,len(word)+1):
                p=word[:i]
                for j in range(len(word)):
                    q=word[j:]
                    self.dictionary[(p,q)]=idx

    def f(self, prefix: str, suffix: str) -> int:
        if (prefix,suffix) in self.dictionary:
            return self.dictionary[(prefix,suffix)]
        return -1


# Your WordFilter object will be instantiated and called as such:
# obj = WordFilter(words)
# param_1 = obj.f(prefix,suffix)

1233. Remove Sub-Folders from the Filesystem

class TrieNode:
    def __init__(self):
        self.children=dict()
        self.is_word=False



class Solution:
    def __init__(self):
        self.root=TrieNode()

    def insert(self,word):
        curr=self.root
        for char in word.split('/')[1:]:
            if char not in curr.children:
                curr.children[char]=TrieNode()
            curr=curr.children[char]

        curr.is_word=True
    def removeSubfolders(self, folder: List[str]) -> List[str]:
        for word in folder:
            self.insert(word)

        res=[]

        def dfs(node,string):
            if node.is_word:
                res.append(string)
                return
            for child_char,child_node in node.children.items():
                dfs(child_node,string+'/'+child_char)

        dfs(self.root,'')
        return res

用不到 Trie

692. Top K Frequent Words

import collections

class Solution:
    def topKFrequent(self, words: List[str], k: int) -> List[str]:
        words.sort()
        return [i[0] for i in collections.Counter(words).most_common(k)]

1023. Camelcase Matching

用正则

import re
class Solution:
    def camelMatch(self, queries: List[str], pattern: str) -> List[bool]:

        pattern_str='[a-z]*?'
        for char in pattern:
            pattern_str+=(char+'[a-z]*?')

        regex=re.compile(pattern_str)
        return [bool(regex.fullmatch(q)) for q in queries]

1268. Search Suggestions System

有重复的,因此用 Trie 反而麻烦了

class Solution:
    def suggestedProducts(self, products: List[str], searchWord: str) -> List[List[str]]:
        max_cnt=3

        products.sort()
        res=[]

        for idx in range(1,len(searchWord)+1):
            searchWord_tmp=searchWord[:idx]

            cnt=0
            res_tmp=[]
            for product in products:
                if product.startswith(searchWord_tmp):
                    res_tmp.append(product)
                    cnt+=1
                if cnt==3:
                    break
            res.append(res_tmp)

        return res

745

作弊:先暴力把所有情况列出来

class WordFilter:

    def __init__(self, words: List[str]):
        self.dictionary=dict()
        for idx,word in enumerate(words):
            for i in range(1,len(word)+1):
                p=word[:i]
                for j in range(len(word)):
                    q=word[j:]
                    self.dictionary[(p,q)]=idx

    def f(self, prefix: str, suffix: str) -> int:
        if (prefix,suffix) in self.dictionary:
            return self.dictionary[(prefix,suffix)]
        return -1

您的支持将鼓励我继续创作!