【matplotlib】面向对象绘图



2017年09月22日    Author:Guofei

文章归类: 0x70_可视化    文章编号: 710

版权声明:本文作者是郭飞。转载随意,标明原文链接即可。本人邮箱
原文链接:https://www.guofei.site/2017/09/22/matplotlib1.html


示例

取fig和ax的方法

import matplotlib.pyplot as plt

# 方法1
fig = plt.figure(2)
axes = fig.subplots(nrows=2, ncols=1, sharex=True, sharey=False)
# 只有一个 axes 时,axes2 是一个 axes 对象,超过一个是 m*n 的 array


# 方法2
fig,ax=plt.subplots(3,2)

# 方法3
fig=plt.figure(3)
ax=fig.add_subplot(111)

对象之间的关系

fig1=plt.figure(1)  
# 先生成一个figure,在figure上生成一个Axes,在Axes上面生成line(plot),或者生成patch(bar&hist)  

fig1=plt.gcf() # get current figure
axes1=plt.gca() # get current axes

fig1.axes[0].lines[0]


# get & set
axes1=plt.getp(fig1,'axes')[0]
lines1=plt.getp(axes1,'lines')[0]

plt.setp(fig.axes[0].lines[0],'color','g')

取所有属性:

plt.getp(plt.gcf())

示例2:方块

import matplotlib.pyplot as plt
fig,ax=plt.subplots(1,1,sharex=True)
# fig,ax=plt.subplots(3,2),ax是一个3*2的list,存放各个子图的axes对象


rect=plt.Rectangle((0.2,0.75),0.4,0.15,color='k',alpha=0.3)
circ=plt.Circle((0.7,0.2),0.15,color='b',alpha=0.3)
pgon=plt.Polygon([[0.15,0.15],[0.35,0.4],[0.2,0.6]],color='g',alpha=0.5)

ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)
plt.show()

共有属性

这些对象共有的一些属性:

关键字 取值 解释
alpha   透明度,0~1
animated 布尔值 用于绘制动画效果
axes   所在的axes
clip_box   对象的裁剪框
clip_on   是否裁剪
clip_path   裁剪的路径
contains   判断指定点是否在对象上的函数
figure   对象所在的figure
label   文本标签
picker   用来控制对象的选取
transform   控制偏移、旋转、缩放等
visible   是否可见
zorder   控制绘图顺序,any number

figure

figure的类型是:

<class 'matplotlib.figure.Figure'>

figure下的属性(用plt.getp(f)获取)

plt.getp(fig)

agg_filter = None
children = [<matplotlib.patches.Rectangle>]
clip_box = None
clip_on = True
clip_path = None
contains = None
default_bbox_extra_artists = [<matplotlib.axes._subplots.AxesSubplot>]
dpi = 72.0
edgecolor = (1.0, 1.0, 1.0, 0.0)
facecolor = (1.0, 1.0, 1.0, 0.0)
figheight = 4.0
figwidth = 6.0
frameon = True
gid = None
label =
path_effects = []
picker = None
rasterized = None
size_inches = [ 6.  4.]
sketch_params = None
snap = None
tight_layout = False
transform = IdentityTransform()
transformed_clip_path_and_affine = (None, None)
url = None
window_extent = TransformedBbox(Bbox([[0.0, 0.0], [6.0, 4.0]]))
zorder = 0

一些解释:

属性 意义
axes Axes对象列表,如[]
patch 作为背景的Rectangle对象
images FigureImage对象列表,用于显示图像
lines Line2D对象列表
patches Patch对象列表
text Text对象列表,用于显示文字

Axes

对象信息:

<matplotlib.axes._subplots.AxesSubplot>

可以有两种方法获取

a1=plt.getp(f,'axes') # 生成的是一个list
a2=plt.gca() #当前激活的axes

Axes 有很多有用的属性

  • 坐标轴
    # xlim/ylim 坐标轴范围
    ax.get_xlim() # 返回 (left,right)
    ax.set_xlim(left, right)
    ax.get_ylim()
    ax.set_ylim(left, right)
    # xlable/ylabel 坐标轴名称
    ax.set_xlabel('xlabel')
    ax.get_xlabel()
    ax.set_ylabel('ylabel')
    ax.get_ylabel()
    # xticks/yticks 在轴上显示哪些刻度
    ax.set_xticks([3,6,7]) # 显示这些刻度
    ax.set_xticklabels(['a','b','c'], rotation=30) # 配合上面的 set_xticks 使用,给显示的刻度改个名
    ax.set_yticks([10,15,40]) # yticks 一样
    
  • title
    ax.set_title('title',loc='center') # return 一个<Text>
    # loc='left','right','center',不同的 loc 对应不同的对象,各自独立
    ax.get_title(loc='center')
    fig.suptitle('title') # 整个图片的title
    
  • visible
    plt.get(ax,'visible')
    
  • legend
    # 第一种写法:
    ax.plot([1,2],[2,1],label='a')
    ax.legend() # 或者 plt.legend()
    # loc = 'best', 'right', 'center left', 'upper right', 'lower right', 'center', 'lower left', 'center right', 'upper left', 'upper center', 'lower center
    
  • 网格线
    ax.grid()
    # b=None, which='major', axis='both', **kwargs
    # which:'major', 'minor', or 'both'
    # axis:'both', 'x', or 'y'
    # **kwargs: 自定义线的样式,例如 color='r', linestyle='-', linewidth=2
    
  • 双坐标轴
    line1 = ax.plot(np.arange(10), label='line1')
    ax_twinx = ax.twinx()
    line2 = ax_twinx.plot(10-np.arange(10), label='line2')
    # 附加:因为是两个 ax,所以 legend 是独立的
    # 如果想让两个坐标轴的 legend 合并:
    lines = line1+line2
    labs = [l.get_label() for l in lines]
    ax.legend(lines, labs, loc='upper right')
    
  • 其它
    ax.autoscale_view() # 自动调整横纵坐标
    ax.set_axis_off() #不显示坐标轴
    
  • 画图
    lines1=ax.plot(range(10),range(10),'.')
    

其它实现方法




plt.getp(ax,'xlim') # 'ylim'
plt.getp(ax,'xlim',(-1,2)) # 'ylim'

plt.setp(ax,'xlabel','$y=x^2$')
plt.getp(ax,'xlabel') # 返回字符串


plt.setp(ax,'title','$y=x^2$')
plt.getp(ax,'title') # 返回字符串


# legend第二种写法:
ax.plot([1,2],[2,1])
plt.legend(['c']) # 入参用list,用以同时给多条线设定 legend

# lines
plt.getp(ax,'lines')  # <a list of 34 Line2D objects> , 可以用类似 a[0]的方式取

axes对象可以包含的对象

Axes方法 所创建的对象 添加进的列表
annotate Annotate texts
bars Rectangle patches
errorbar Line2D,Rectangle lines,patches
fill Polygon patches
hist Rectangle patches
imshow AxesImage images
legend Legend legends
plot Line2D lines
scatter PolygonCollection Collections
text Text texts

其它

ax.axes is ax # True
# 用plt.getp(ax)获取
adjustable = box
agg_filter = None
anchor = C
animated = False
aspect = auto
autoscale_on = False
autoscalex_on = True
autoscaley_on = False
axes_locator = None
axisbelow = line
children = [<matplotlib.lines.Line2D>]
clip_box = None
clip_on = True
clip_path = None
contains = None
cursor_props = (1, (0.0, 0.0, 0.0, 1))
data_ratio = 0.36363636363636365
default_bbox_extra_artists = [<matplotlib.lines.Line2D>]
facecolor = (1.0, 1.0, 1.0, 1)
fc = (1.0, 1.0, 1.0, 1)
frame_on = True
geometry = (1, 1, 1)
gid = None
images = <a list of 0 AxesImage objects>
label =
legend = None
legend_handles_labels = ([], [])
navigate = True
navigate_mode = None
path_effects = []
picker = None
position = Bbox(x0=0.125, y0=0.125, x1=0.9, y1=0.88)
rasterization_zorder = None
rasterized = None
renderer_cache = None
shared_x_axes = <matplotlib.cbook.Grouper
shared_y_axes = <matplotlib.cbook.Grouper
sketch_params = None
snap = None
subplotspec = <matplotlib.gridspec.SubplotSpec
title = Pyplot
transform = IdentityTransform()
transformed_clip_path_and_affine = (None, None)
url = None
window_extent = Bbox(x0=50.5, y0=32.5, x1=392.3, y1=256.94)
xaxis = XAxis(54.000000,36.000000)
xaxis_transform = BlendedGenericTransform(CompositeGenericTransform(...))
xbound = (-0.30000000000000004, 6.2999999999999998)
xgridlines = <a list of 9 Line2D xgridline objects>
xmajorticklabels = <a list of 9 Text xticklabel objects>
xminorticklabels = <a list of 0 Text xticklabel objects>
xscale = linear
xticklabels = <a list of 9 Text xticklabel objects>
xticklines = <a list of 18 Text xtickline objects>
xticks = [-1.  0.  1.  2.  3.  4.]...
yaxis = YAxis(54.000000,36.000000)
yaxis_transform = BlendedGenericTransform(BboxTransformTo(Transforme...))
ybound = (-1.2, 1.2)
ygridlines = <a list of 7 Line2D ygridline objects>
ymajorticklabels = <a list of 7 Text yticklabel objects>
yminorticklabels = <a list of 0 Text yticklabel objects>
yscale = linear
yticklabels = <a list of 7 Text yticklabel objects>
yticklines = <a list of 14 Line2D ytickline objects>
yticks = [-1.5 -1.  -0.5  0.   0.5  1. ]...

line

对象信息:

<matplotlib.lines.Line2D>

获取方法类似

l=plt.getp(a,'lines') # 是一个list
l=ax.plot(x,y,label="$sin(x)$",color='red',linewidth=2,marker='.',linestyle='-')
l=plt.plot(x,y,label="$sin(x)$",color='red',linewidth=2) # 可以直接在plot中配置参数
# color: ‘b’	blue, ‘g’	green, ‘r’	red, ‘c’	cyan, ‘m’	magenta, ‘y’	yellow, ‘k’	black, ‘w’	white

获取line属性的方法

line=plt.plot(x,y)

plt.setp(line[0],'color','r') # plt.getp(line[0],'color')
plt.setp(line,'color','r') # setp可以对一组对象进行操作,getp只能操作一个

常用属性

plt.setp(line,'xdata',[1,2,3],'ydata',[4,5,6])
plt.setp(line,'xydata',[[1,2,3],[4,5,6]])

line.axes

line有这些属性:

agg_filter = None
alpha = None
animated = False
antialiased or aa = True
children = []
clip_box = TransformedBbox(Bbox([[0.0, 0.0], [1.0, 1.0]]), Co...)
clip_on = True
clip_path = None
color or c = #1f77b4
contains = None
dash_capstyle = butt
dash_joinstyle = round
data = (array([ 0.        ,  0.66666667,  1.33333333,  2....]))
drawstyle = default
figure = Figure(432x288)
fillstyle = full
gid = None
label = $cos(x^2)$
markevery = None
path = Path(array([[ 0., -0.],[ 0...]]))
path_effects = []
picker = None
pickradius = 5
rasterized = None
sketch_params = None
snap = None
solid_capstyle = projecting
solid_joinstyle = round
transform = CompositeGenericTransform(TransformWrapper(Blended...))
transformed_clip_path_and_affine = (None, None)
url = None
visible = True
zorder = 2
属性 解释
label 给plot的曲线一个标签名字,可以使用LaTeX
color 给曲线指定颜色,可以是英文单词’red’等,也可以是16进制数’#ff0000’,也可以用0~1tuple(1.0,0,0)
linewidth 曲线宽度,float
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markerfacecoloralt or mfcalt any matplotlib color
markersize or ms float
xdata 1D array
ydata 1D array

linestyle

character description
'-' solid line style
'--' dashed line style
'-.' dash-dot line style
':' dotted line style

marker

character description
'.' point marker点
',' pixel marker一个像素点
'o' circle marker实心圆
'v' triangle_down marker
'^' triangle_up marker
'<' triangle_left marker
'>' triangle_right marker
'1' tri_down marker
'2' tri_up marker
'3' tri_left marker
'4' tri_right marker
's' square marker方块
'p' pentagon marker五边形
'*' star marker五角星
'h' hexagon1 marker六边形
'H' hexagon2 marker横六边形
'+' plus marker
'x' x marker
'D' diamond marker菱形
'd' thin_diamond marker瘦菱形
'|' vline marker竖线
'_' hline marker横线

line的其他参数

antialiased or aa: [True | False]
axes: an :class:`~matplotlib.axes.Axes` instance
clip_box: a :class:`matplotlib.transforms.Bbox` instance
clip_on: [True | False]
clip_path: [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ]
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
drawstyle: ['default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post']
figure: a :class:`matplotlib.figure.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top' | 'none']
gid: an id string
label: string or anything printable with '%s' conversion.
markevery: [None | int | length-2 tuple of int | slice | list/array of int | float | length-2 tuple of float]
path_effects: unknown
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: [True | False | None]
sketch_params: unknown
snap: unknown
solid_capstyle: ['butt' | 'round' |  'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string

patch

bar()和hist()都是创建Patch对象列表
每个Patch列表中

n,bins,rects=ax.hist(...)
  • 这里的rects是<a list of 10 Patch objects>
  • rects[0]是<matplotlib.patches.Rectangle at 0x1b592e47be0>
  • ax.patches是一个list,list中的元素是

示例:

import matplotlib.pyplot as plt
from scipy.stats import norm

f1 = plt.figure(1)
ax = plt.subplot(111)
n, bins, rects = ax.hist(norm.rvs(loc=0, scale=1, size=100))
rects

Axis

fig = plt.figure(1)
ax = fig.add_subplot(111)
line=ax.plot([1,2,3,4,5])
xaxis=ax.xaxis
plt.getp(xaxis)

可以获得它们的属性:

agg_filter = None
alpha = None
animated = False
axes = Axes(0.125,0.11;0.775x0.77)
children = [<matplotlib.text.Text object at 0x0000020033F2F78...>]
clip_box = TransformedBbox(Bbox([[0.0, 0.0], [1.0, 1.0]]), Co...)
clip_on = True
clip_path = None
contains = None
data_interval = [ 0.  4.]
figure = Figure(640x480)
gid = None
gridlines = <a list of 11 Line2D gridline objects>
label = Text(0.5,0,'')
label_position = bottom
label_text =
major_formatter = <matplotlib.ticker.ScalarFormatter>
major_locator = <matplotlib.ticker.AutoLocator>
major_ticks = [<matplotlib.axis.XTick>]
majorticklabels = <a list of 11 Text major ticklabel objects>
majorticklines = <a list of 22 Line2D ticklines objects>
majorticklocs = [-0.5  0.   0.5  1.   1.5  2. ]...
minor_formatter = <matplotlib.ticker.NullFormatter>
minor_locator = <matplotlib.ticker.NullLocator>
minor_ticks = []
minorticklabels = <a list of 0 Text minor ticklabel objects>
minorticklines = <a list of 0 Line2D ticklines objects>
minorticklocs = []
minpos = 1.0
offset_text = Text(1,0,'')
path_effects = []
picker = None
pickradius = 15
rasterized = None
scale = linear
sketch_params = None
smart_bounds = False
snap = None
tick_padding = 3.5
tick_space = 11
ticklabels = <a list of 11 Text major ticklabel objects>
ticklines = <a list of 22 Line2D ticklines objects>
ticklocs = [-0.5  0.   0.5  1.   1.5  2. ]...
ticks_position = bottom
transform = IdentityTransform()
transformed_clip_path_and_affine = (None, None)
units = None
url = None
view_interval = [-0.2  4.2]
visible = True
zorder = 0
属性 意义
ticklocs 刻度位置
ticklabels 刻度对应的文字

annotate

用来绘制带箭头的注释文字

annotate(s,xy,xytext,xycoords='data',textcoords='data',arrowprops=None)
  • s:注释文本
  • xy:箭头处的坐标
  • xytext:注释文本的坐标
  • xycoords&textcoords都是字符串, 解释在下表
属性值 解释
figure points 以点为单位的坐标,图表左下角的坐标(0,0)
figure pixels 以像素为单位的坐标,图表左下角为(0,0)
figure fraction 图表坐标系中的坐标,左下角是(0,0),右上角是(1,1)
axes points 以点为单位的坐标,子图左下角的坐标(0,0)
axes pixels 以像素为单位的坐标,子图左下角的坐标(0,0)
axes fraction 子图坐标系中的坐标,左下角是(0,0),右上角是(1,1)
data 数据坐标系中的坐标
offset points 以点为单位,相对于点xy的坐标
polar 数据坐标系中的极坐标

text

用来绘制文字

ax.text(x,y,string,fontname='STKaiti',fontsize=20,color='r',transform=ax.transData) # 数据坐标
ax.text(x,y,string,fontname='STKaiti',fontsize=20,color='r',transform=ax.transAxes) # Axes内坐标,左下是(0,0),右上是(1,1)
fig.text(x,y,string,fontname='STKaiti',fontsize=20,color='r',transform=ax.transData) # 数据坐标
fig.text(x,y,string,fontname='STKaiti',fontsize=20,color='r',transform=ax.transAxes) # Figure内坐标,左下是(0,0),右上是(1,1)
  • fontname:字体,参见这里

您的支持将鼓励我继续创作!