种类 | 模型 | 参数 | fit | partial_fit | transfrom | fit_transfrom | inverse_transfrom | n_jobs | 方法/字段 | 官网 |
decomposition | PCA | n_components
: int, float, None or string whiten : bool, optional (default False) 可以保证输出值的方差为1 svd_solver : {‘auto’, ‘full’, ‘arpack’, ‘randomized’} |
有 | 书上说有 但实际无 |
有 | 有 | 有 | 无 | get_covariance() Compute data covariance with the generative
model. get_params([deep]) Get parameters for this estimator. get_precision() Compute data precision matrix with the generative model. inverse_transform(X) Transform data back to its original space.逆操作升维 score(X[, y]) Return the average log-likelihood of all samples. score_samples(X) Return the log-likelihood of each sample. set_params(**params) Set the parameters of this estimator. components_ explained_variance_ explained_variance_ratio_ |
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html |
KernelPCA | n_components
: int, default=None kernel : “linear” | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed” gamma : float, default=1/n_features,针对rbf, poly and sigmoid degree : int, default=3 . Degree针对 poly coef0 : float, default=1. poly and sigmoid中的自由项 kernel_params :自定义Kernel中的参数 alpha : int, default=1.0 |
有 | 无 | 有 | 有 | 有 | http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html | |||
manifold | MDS | n_components : int, optional, default: 2,要压缩到多少维 metric : boolean, optional, default: True, True用metric度量(适合连续数据),False用nometric度量(适合分类变量) n_init : int, optional, default: 4,重复运行几次 dissimilarity : ‘euclidean’(default) | ‘precomputed’, optional ‘euclidean’输入的是原始数据 ‘precomputed’输入的是距离矩阵 |
有 | 无 | 有 | 无 | stress_#压力值,可以用来计算应当降为多少维 embedding_#mds没有transform,这个是降维后的数据 stress_#压力矩阵,可以理解为误差 |
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html | ||
Isomap | n_neighbors
: integer:number of neighbors n_components : 要压缩到多少维 eigen_solver : [‘auto’|’arpack’|’dense’] path_method : string [‘auto’|’FW’|’D’] neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’] |
有 | 无 | 无 | 有 | 无 | embedding_ kernel_pca_ |
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html | ||
LLE | n_neighbors
: integer n_components : integer reg : float正则化系数 eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’} |
embedding_vectors_ reconstruction_error_#误差 |
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html | |||||||
neural_network | BernoulliRB | n_components
: int, 要压缩到多少维 learning_rate batch_size : int, optional n_iter : int, optional verbose : int, optional. The verbosity level. The default, zero, means silent mode. random_state |
有 | 有 | 有 | 有 | 无 | intercept_hidden_
: array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. |
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html |