种类 模型 参数 fit partial_fit transfrom fit_transfrom inverse_transfrom n_jobs 方法/字段 官网
decomposition  PCA n_components : int, float, None or string
whiten : bool, optional (default False)
    可以保证输出值的方差为1
svd_solver : {‘auto’, ‘full’, ‘arpack’, ‘randomized’}
书上说有
但实际无
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative model.
inverse_transform(X) Transform data back to its original space.逆操作升维
score(X[, y]) Return the average log-likelihood of all samples.
score_samples(X) Return the log-likelihood of each sample.
set_params(**params) Set the parameters of this estimator.

components_
explained_variance_
explained_variance_ratio_
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
KernelPCA n_components : int, default=None
kernel : “linear” | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed”
gamma : float, default=1/n_features,针对rbf, poly and sigmoid
degree : int, default=3 . Degree针对 poly
coef0 : float, default=1. poly and sigmoid中的自由项
kernel_params :自定义Kernel中的参数
alpha : int, default=1.0
      http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
                     
manifold MDS n_components : int, optional, default: 2,要压缩到多少维
metric : boolean, optional, default: True,
    True用metric度量(适合连续数据),False用nometric度量(适合分类变量)

n_init : int, optional, default: 4,重复运行几次
dissimilarity : ‘euclidean’(default) | ‘precomputed’, optional
    ‘euclidean’输入的是原始数据
    ‘precomputed’输入的是距离矩阵
    stress_#压力值,可以用来计算应当降为多少维
embedding_#mds没有transform,这个是降维后的数据
stress_#压力矩阵,可以理解为误差
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
Isomap n_neighbors : integer:number of neighbors
n_components : 要压缩到多少维
eigen_solver : [‘auto’|’arpack’|’dense’]
path_method : string [‘auto’|’FW’|’D’]
neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’]
  embedding_
kernel_pca_
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
LLE n_neighbors : integer
n_components : integer
reg : float正则化系数
eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}
            embedding_vectors_
reconstruction_error_#误差
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
neural_network BernoulliRBM n_components : int, 要压缩到多少维
learning_rate
batch_size : int, optional
n_iter : int, optional
verbose : int, optional. The verbosity level. The default, zero, means silent mode.
random_state
  intercept_hidden_ : array-like, shape (n_components,)
Biases of the hidden units.

intercept_visible_ : array-like, shape (n_features,)
Biases of the visible units.

components_ : array-like, shape (n_components, n_features)
Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units.
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html