种类 | 模型 | 参数 | fit | 字段 | n_jobs | 官网 |
cluster | Kmeans | n_clusters init : {‘k-means++’, ‘random’ or an ndarray}选取初始点的方法 n_init : int, default: 10重新运行的次数 verbose : int, default 0打印日志 |
fit(X[,
y]) Compute k-means clustering. fit_predict(X[, y]) Compute cluster centers and predict cluster index for each sample. fit_transform(X[, y]) Compute clustering and transform X to cluster-distance space. predict(X) Predict the closest cluster each sample in X belongs to. score(X[, y]) Opposite of the value of X on the K-means objective. transform(X) Transform X to a cluster-distance space. |
有 | http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html | |
MiniBatchKMeans | http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html | |||||
AgglomerativeClustering | n_clusters
: int, default=2 affinity : string or callable, : “euclidean”(default), “l1”, “l2”, “manhattan”, “cosine”, or ‘precomputed’. If linkage is “ward”, only “euclidean” is accepted. linkage : {“ward”, “complete”, “average”} |
fit(X[,
y]) Fit the hierarchical clustering on the data fit_predict(X[, y]) Performs clustering on X and returns cluster labels. |
||||
DBSCAN | eps : float, optional min_samples : int, optional metric : string, or callable metric_params : dict, optional algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional p : float, optional:The power of the Minkowski |
fit(X[,
y, sample_weight]) Perform DBSCAN clustering from features or distance
matrix. fit_predict(X[, y, sample_weight]) Performs clustering on X and returns cluster labels. |
有 | http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html | ||
mixture | GaussianMixture | n_components : int, defaults to 1. covariance_type : {‘full’, ‘tied’, ‘diag’, ‘spherical’},指定协方差类型 'full' (each component has its own general covariance matrix), 'tied' (all components share the same general covariance matrix), 'diag' (each component has its own diagonal covariance matrix), 'spherical' (each component has its own single variance). n_init : int, defaults to 1.模型重新运行的次数 init_params : {‘kmeans’, ‘random’}, defaults to ‘kmeans’. warmstart |
aic(X) Akaike information criterion for the current model on
the input X. bic(X) Bayesian information criterion for the current model on the input X. fit(X[, y]) Estimate model parameters with the EM algorithm. predict(X) Predict the labels for the data samples in X using trained model. predict_proba(X) Predict posterior probability of each component given the data. sample([n_samples]) Generate random samples from the fitted Gaussian distribution. score(X[, y]) Compute the per-sample average log-likelihood of the given data X. score_samples(X) Compute the weighted log probabilities for each sample. |
http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html |