种类 模型 参数 fit 字段 n_jobs 官网
cluster Kmeans n_clusters
init : {‘k-means++’, ‘random’ or an ndarray}选取初始点的方法
n_init : int, default: 10重新运行的次数
verbose : int, default 0打印日志
fit(X[, y]) Compute k-means clustering.
fit_predict(X[, y]) Compute cluster centers and predict cluster index for each sample.
fit_transform(X[, y]) Compute clustering and transform X to cluster-distance space.
predict(X) Predict the closest cluster each sample in X belongs to.
score(X[, y]) Opposite of the value of X on the K-means objective.
transform(X) Transform X to a cluster-distance space.
  http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
MiniBatchKMeans         http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
AgglomerativeClustering n_clusters : int, default=2
affinity : string or callable, :  “euclidean”(default), “l1”, “l2”, “manhattan”, “cosine”, or ‘precomputed’.
    If linkage is “ward”, only “euclidean” is accepted.
linkage : {“ward”, “complete”, “average”}
fit(X[, y]) Fit the hierarchical clustering on the data
fit_predict(X[, y]) Performs clustering on X and returns cluster labels.
     
DBSCAN eps : float, optional
min_samples : int, optional
metric : string, or callable
metric_params : dict, optional
algorithm : {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
p : float, optional:The power of the Minkowski
fit(X[, y, sample_weight]) Perform DBSCAN clustering from features or distance matrix.
fit_predict(X[, y, sample_weight]) Performs clustering on X and returns cluster labels.
  http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
mixture GaussianMixture n_components : int, defaults to 1.
covariance_type : {‘full’, ‘tied’, ‘diag’, ‘spherical’},指定协方差类型
    'full' (each component has its own general covariance matrix),
    'tied' (all components share the same general covariance matrix),
    'diag' (each component has its own diagonal covariance matrix),
    'spherical' (each component has its own single variance).
n_init : int, defaults to 1.模型重新运行的次数
init_params : {‘kmeans’, ‘random’}, defaults to ‘kmeans’.
warmstart
aic(X) Akaike information criterion for the current model on the input X.
bic(X) Bayesian information criterion for the current model on the input X.
fit(X[, y]) Estimate model parameters with the EM algorithm.
predict(X) Predict the labels for the data samples in X using trained model.
predict_proba(X) Predict posterior probability of each component given the data.
sample([n_samples]) Generate random samples from the fitted Gaussian distribution.
score(X[, y]) Compute the per-sample average log-likelihood of the given data X.
score_samples(X) Compute the weighted log probabilities for each sample.
    http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html